
Combined Tight-Binding and Numerical Electrodynamics
Understanding of the STEM/EELS Magneto-optical Responses of
Aromatic Plasmon-Supporting Metal Oligomers
Charles Cherqui,‡ Nicholas W. Bigelow,‡ Alex Vaschillo, Harrison Goldwyn, and David J. Masiello*

Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States

ABSTRACT: The optical-frequency magnetic and electric
properties of cyclic aromatic plasmon-supporting metal nano-
particle oligomers are explored through a combination of scanning
transmission electron microscopy (STEM)/electron energy-loss
spectroscopy (EELS) simulation and first-principles theory. A
tight-binding-type model is introduced to explore the rich
hybridization physics in these plasmonic systems and tested with
full-wave numerical electrodynamics simulations of the STEM
electron probe. Building from a microscopic electric model,
connection is made at the macroscopic level between the
hybridization of localized magnetic moments into delocalized magnetic plasmons of controllable magnetic order and the
mixing of atomic pz orbitals into delocalized π molecular orbitals of varying nodal structure spanning the molecule. It is found
that the STEM electrons are uniquely capable of exciting all of the different hybridized eigenmodes of the nanoparticle
assemblyincluding multipolar closed-loop ferromagnetic and antiferromagnetic plasmons, giant electric dipole resonances, and
radial breathing modesby raster scanning the beam to the appropriate position. Comparison to plane-wave light scattering and
cathodoluminescence spectroscopy is made. The presented work provides a unified understanding of the complete plasmon
eigenstructure of such oligomer systems as well as of the excitation conditions necessary to probe each mode.

KEYWORDS: magnetic plasmon resonances, electron energy-loss spectroscopy (EELS),
scanning transmission electron microscopy (STEM), cathodoluminescence (CL) spectroscopy

The magnetic permeability of the coinage metals is nearly
that of vacuum in the visible part of the electromagnetic

spectrum. However, when a localized surface plasmon
resonance is excited on a metal nanoparticle, its electron
density oscillation induces a small local magnetic field that is 90
degrees out of phase from its electric field. In spite of the
relative weakness of this magnetic field, in 2005 Alu ̀ and
Engheta1 predicted that a sizable effective magnetic resonance
could be generated within a collection of metal nanoparticles
arranged on the corners of a rigid polygon due to the collective
electric polarization of each particle.2−4 This collective mode
may hybridize in the “bonding” configuration (i.e., as electric
dipoles organized head-to-tail around the polygon ring in a
closed loop) to mimic a split-ring resonator5 with multiple
splits. When the system is driven resonantly at the frequency of
its lowest lying eigenmode with either far-field plane-wave
radiation6,7 or in the near field with an electric or magnetic
dipole,8,9 a polarization current is set up that oscillates back and
forth on each constituent nanoparticle. All together the
nanoparticles conspire to localize their weak intrinsic magnetic
fields constructively toward the ring center. This collective
magnetic resonance has an effective magnetic momenta so-
called magnetic plasmonthat oscillates between north
(counterclockwise) and south (clockwise) at optical frequen-
cies. Assemblies of nanoparticles that support magnetic
plasmon modes are defined to be magnetic metamaterials,

meaning that they possess anomalous magnetic properties
beyond that of ordinary metals.
As multiple nanoparticle-based polygon assemblies are fused

together into extended metal oligomers, the magnetic plasmon
resonances of each ring unit cell mix and hybridize10−12 just as
electric plasmon resonances do,13 forming new delocalized
magnetic plasmons of varying magnetic character and nodal
order. Evidence of this hybridization has already been predicted
in near-linear chains of fused nanoparticle rings,8,9 where the
long-range propagation and interference of the maximally nodal
antiferromagnetic plasmon was demonstrated. The existence of
magnetic plasmon modes has also been demonstrated in
metallodielectric nanoclusters,14 where certain magnetic
plasmon modes were transmuted to new ones through the
addition of dielectric nanoparticles. Beyond the fundamental
magnetic plasmon resonances described in these papers, the
theory of plasmon hybridization further dictates the existence
of delocalized plasmon resonances of varying magnetic and
electric character and multipolar order. However, to date, no
systematic and unifying first-principles understanding of the
complete hybridized plasmon eigenstructure of such oligomer
systems of arbitrary morphology has appeared in the literature.
Nonetheless, magnetic plasmons have recently been the focus
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of intense interest7−12,14−43 due to their potential application in
the design of metamaterials. The exploration of Fano effects
based on the interference between magnetic and electric
plasmon resonances has also attracted considerable inves-
tigation recently.7,15,44 Beyond this literature, particular
attention should be given to the work of van Aken and co-
workers on the detection of toroidal modes in plasmonic
nanocavities using energy-filtered transmission electron micros-
copy.45,46 Babinet’s principle dictates how the surface plasmon
modes of an array of nanocavities are related to an array of
nanoparticles of the same shape. Yet, this analogy has yet to be
explored for these nanocavity arrays and the exotic magnetic
resonances that they support.
It is a main purpose of this paper to construct a complete

picture of both magnetic and electric plasmon hybridization
across a family of experimentally accessible cyclic aromatic
oligomer systems of arbitrary morphology and metallic
composition. To illustrate the formalism in detail, we focus
on the particular structures displayed in Figure 1. The

geometries under consideration are composed of planar cyclic
assemblies of metal nanoparticles arranged to mimic certain
aromatic molecules.47 This similarity allows us to exploit a
corresponding microscopic electric and macroscopic magnetic
tight-binding model. The tight-binding model for aromatic
molecules is known as Hückel theory and is mathematically
equivalent to the model of magnetic plasmon hybridization
used in this paper.48 Using these models, we find that such
structures support a progression of hybridized multipolar
magnetic plasmons of varying ferromagnetic and antiferromag-
netic character as well as multipolar electric plasmons of giant
dipole and radial breathing character. We further demonstrate
through simulation that these hybridized plasmons can be
individually excited by a scanning transmission electron
microscope (STEM) and identified in electron energy-loss
spectroscopy (EELS) and cathodoluminescence (CL) experi-
ments. Such experiments are simulated with the full-wave
electron-driven discrete-dipole approximation (e-DDA) code,

which numerically solves for the electrodynamics of a swift ion
and its interaction with nearby metal surfaces.49−53 The results
are found to be in excellent agreement with those stemming
from the tight-binding analysis.
The work presented here differs form previous studies of

magnetic plasmons in several ways: earlier studies have focused
on a few of the modes possible in single-ring systems1,3,15 and
in near-linear chains of coupled systems.9 However, excitation
of the complete eigenspectrum of collective magnetic and
electric plasmon modes in aromatic nanoparticle oligomers by a
STEM electron beam has not been explored previously.
Consequently, their complete hybridization structure has not
been fully appreciated. Larger and more extended systems
exhibit even richer magnetic properties that could be useful in
the development of magneto-inductive wave guides54,55 and
metamaterials.56−59 The keV electrons generated within the
STEM possess a high degree of spatial localization due to their
sub-angstrom de Broglie wavelength, allowing one to
specifically control the spatial location where energy is
deposited into the system. This provides a mechanism for the
systematic excitation of the entire plasmon eigenspectrum,
which cannot be achieved with plane-wave excitation. It is the
purpose of this paper to elucidate these diverse and controllable
properties of extended cyclic magnetic-plasmon supporting
nanostructures using analytic theory combined with STEM/
EELS simulations.

■ TIGHT-BINDING MODELS OF INTERACTING
LOCALIZED SURFACE PLASMON RESONANCES

Electric Tight-Binding Model. To model the electric
plasmon resonances occurring in cyclic metal nanoparticle
assemblies such as those displayed in Figure 1, we follow the
coupled oscillator formalism of Lucas and co-workers.60 This
model treats the electric dipole response induced in the ith
nanoparticle as a fictitious surface plasmon oscillator of mass
msp and dipole moment pi(ω) ≡ p(Ri, ω) = α(ω)·E(Ri, ω) and
is equivalent to the well-known hybridization theory13 in the
dipole limit. Particles located at positions Ri and Rj are coupled
through their mutual electric dipole−electric dipole interaction,
−pi(t) Λij

0 pj(t), where Λij
0 ≡ Λ0(Ri, Rj) = [3n̂ijn̂ij − 1ij]/|Ri −

Rj|
3 is the near-field component of the standard electric dipole

relay tensor evaluated in the quasi-static limit (kd ≪ 1) and n̂ij
≡ (Ri − Rj)/|Ri − Rj|. In the case where each particle is an
isotropic metal nanosphere of radius d, its linear polarizability
may be decomposed into the sum of two terms:

α α αω
ω

ω ω γ ω
= +

+ −i
( )

( )C sp
sp
2

sp
2

(1)

the first corresponding to the ionic core response and the
second to the response of the electron gas confined to the
surface of a sphere, giving it a resonant frequency of ωsp = Ωpl/
(ε∞ + 2)1/2 in terms of the plasma frequency Ωpl, a bulk
dephasing rate of γ, and an infinite frequency relative
permittivity ε∞. Here, αC = d31(ε∞ − 1)/(ε∞ + 2) and αsp =
3d31/(ε∞ + 2) are based upon the Drude model ε(ω) = ε∞ −
Ωpl

2 /ω(ω + iγ) for the electronic response of the metal.
If we ignore the polarization of the core, we find that the

time evolution of the dipole moment of the surface conduction
electrons induced by an electric field E is described by

Figure 1. Planar cyclic assemblies of metal nanoparticlesso-called
metal oligomersarranged into a 1-mer (left), 2-mer (middle), and 6-
mer (right), mimicking the aromatic molecules benzene, naphthalene,
and coronene. Each system is constructed from the same hexagonal
unit cell depicted in the left image. When resonantly driven at
frequencies near the electric dipole plasmon resonance of an individual
nanoparticle, the N-mer exhibits collective plasmon resonances of both
electric and magnetic character that are delocalized across the entire
assembly. The magnetic plasmon resonances of these N-mer systems
are especially interesting, as they support optical-frequency magnetic
moments of antiferromagnetic or ferromagnetic character of varying
nodal order, all of which may be controllably excited by the electron
beam of a STEM and detected in EELS. The particular aloof beam
positions labeled a, b, c, and d (and their symmetric equivalents) will
be investigated in the following.
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which is the solution of the damped and driven harmonic
oscillator p̈(R, t) + γṗ(R, t) + ωsp

2 p(R, t) = (−e2/msp)E(R, t).
Neglecting damping, this equation can be derived from the
classical Hamiltonian:
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expressed in terms of its generalized coordinates for the
displacement u = p/(−e) and momentum of the fictitious
plasmon oscillator of mass msp = e2/αspωsp

2 , where αsp is defined
according to αsp = αsp1. Extension of eq 3 to an assembly of n
metal nanoparticles interacting pairwise through the electric
dipole−electric dipole potential energy −pi(ω) Λij

0 pj(ω) results
in the total Hamiltonian.
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where the electric field appearing in H0 is here generated by the
n − 1 other nanoparticles according to E(Ri, t) = ∑j≠iΛij

0 (−e)
uj(t). The first term in brackets is the sum of kinetic and
potential energies for the localized surface plasmon resonance
on each particle. The second term is the interaction energy of

the ith plasmon with the electric field produced by the jth
plasmon.
It is convenient to recast eq 4 in terms of the dimensionless

v a r i a b l e s Q i ( t ) = (m s pω s p / ℏ ) 1 / 2 u i ( t ) a n d
ωΠ = ℏt t m( ) ( )/i i sp sp , yielding
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with the dimensionless coupling constant gij = αsp/d
3rij
3 = (1/

rij
3)(3/[ε∞ + 2]) and dimensionless distance between nano-
particles, rij = |Ri − Rj|/d. Restricting the nanoparticles to lie
within a common plane and further restricting to nearest
neighbor interactions removes the ij-dependence from r and g
when the nanoparticles are positioned at the vertices of a
regular polygon, such as is the case of the three N-mer
assemblies displayed in Figure 1. This has the effect of
simplifying the Hamiltonian even further by removing a
direction of space (i.e., the direction normal to the plane)
and simplifying the coupling constants. A route to quantization
of the surface plasmon is now apparent by promoting the
dynamical variables in eq 5 to operators and imposing upon
them the commutation relations associated with boson
statistics.61,62 Interestingly, the coupling constant g is
independent of the sphere radius and depends only on the
ratio of the distance between the particles to their radius. This
lack of dependence on the sphere radius is to be expected given
that the quasi-static approximation is built into our tight-

Figure 2. |Bloc| associated with each of the 12 tight-binding model eigenmodes of the 1-mer unit cell arranged in increasing energy order, labeled by ν
= 1, ..., 12. Red (blue) represents a north (south) oriented magnetic dipole, while white represents the absence of a magnetic moment. The black
arrows in each panel depict the electric dipole moments of the corresponding eigenmode. Circles are overlaid upon each dipole to indicate the
locations of the underlying nanoparticles, although the latter are not explicitly included in the tight-binding model. The dipole moments of the
ground state (ν = 1) form a closed loop and act to localize their magnetic field into the center of the unit cell. They present no net electric dipole
moment, but they collectively generate an effective magnetic moment. The latter is called a magnetic plasmon resonance.1,3 In addition there are
eigenmodes that correspond to giant electric dipoles (ν = 3,4) and even a radial breathing mode (ν = 12). Depending on the location of the STEM
electron beam, each one of these features can be controllably excited and detected in EELS. The symbols appearing in each panel correspond to
certain spectral positions in Figure 5. The net electric and magnetic moments ptot and mtot are overlaid above each eigenmode.
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binding model. Furthermore, since the dipole that represents
the response of a nanosphere is located at the sphere center,
there is a minimum value for r and in the limit that two spheres
touch g has a maximum of (1/23)(3/[ε∞ + 2]) ≠ ∞.
It should be noted that this model neglects all quantum

effects due to electron wave function spill out, electron
tunneling between metal nanoparticles, and the discretization
of energy levels as the particles become small enough to be
classified as metal clusters. Such effects are important for
nanoparticles separated at distances less than ∼0.5 nm or for
radii of only a few nanometers, imposing a lower bound on the
validity of our model. Despite these limitations, it provides a
reliable description of the energy eigenspectrum for the
hybridized plasmon responses occurring within the N-mer
nanoparticle assemblies discussed in this paper.
Diagonalization of the Hamiltonian in eq 5 for the planar 1-

mer unit cell composed of six nanoparticles (see Figure 1, left
panel) yields a set of 12 hybridized plasmon eigenmodes,
{pi(t)}ν, labeled by ν = 1, ..., 12. The spatial dependence of the
magnetic field magnitude |Bν| associated with each through the
curl of the vector potential Aν(x, t) = ∑i = 1

6 (−ik)piν(t) exp(ik|x
− Ri|)/|x − Ri| is displayed in Figure 2; here k = ω/c is the wave
vector of light. The ground state is characterized as having
electric dipole moments oriented tangent to the circle
circumscribing the hexagon on which they lie. This head-to-
tail or closed-loop arrangement of the dipoles allows for the
concentration of the individual magnetic fields produced by
each sphere toward the center of the unit cell, leading to a
nontrivial focusing of the magnetic field into a magnetic hot spot
with an effective magnetic moment. This is a well-known result,
first proposed in 2005 by Alu ̀ and Engheta,1 and is similar to
how a split ring resonator operates.
When a collection of N unit cells is arranged into an N-mer,

such as the 2-mer and 6-mer displayed in Figure 1, the
spectrum of the Hamiltonian in eq 5 contains an even greater
diversity of eigenmodes. Magnetic plasmons that are hybrid-
izations of the effective magnetic moments of each unit cell
arise as do fundamentally different plasmons of giant electric
dipole and radial breathing character, among many others.
Figure 3 and Figure 4 display the magnetic field magnitude, |B|,
corresponding to five eigenmodes of the 2-mer and the lowest
lying nine eigenmodes of the 6-mer, computed from H in eq 5;
the 2-mer has 20 and the 6-mer has 48 total hybridized
eigenmodes. Some of the general features exposed by this
model are as follows.

1. All ferromagnetic plasmon modes contain a net zero
electric dipole moment and a net nonzero magnetic
dipole moment.

2. The hybridized plasmon eigenenergies split with respect
to the electric dipole response, ℏωsp, of a single
nanoparticle, with the closed-loop magnetic modes all
lying at the bottom, bounded from above by the
collective giant dipole modes. All hybridized plasmon
resonances of either electric or magnetic character reduce
to that of the single nanoparticle’s dipole plasmon in the
limit where g → 0.

3. The dynamics of the system is governed by nearest
neighbor interactions, meaning that the local environ-
ment of each nanoparticle dominates the energetics of
the collective assembly. Since all magnetic plasmon
modes are composed of electric dipoles on adjacent
particles oriented in a head-to-tail arrangement, they are

all nearly energetically degenerate. This means that
choosing an excitation source with the right spectral and
more importantly spatial behavior will be important
when trying to excite a particular magnetic plasmon.

It is important to point out that because the electric
Hamiltonian (eq 5) was derived within the quasi-static limit, it
does not account for the total energy of the system whenever a

Figure 3. |Bloc| associated with five of the tight-binding model
eigenmodes of the 2-mer arranged in increasing energy order, labeled
by ν = 1, 2, 9, 11, 19. Fifteen other eigenmodes also appear in the
spectrum, which we do not display. With only two units cells, the 2-
mer possesses only two hybridized magnetic plasmons. The ground
state (ν = 1) is ferromagnetic in character, with the magnetic moments
on each unit cell pointing in the same direction. The opposite is true
for the first excited state (ν = 2), which is antiferromagnetic in
character. A giant electric dipole plasmon (ν = 9) also appears in the
spectrum. Depending on the location of the STEM electron beam,
each one of these features can be controllably excited and detected in
EELS. The symbols appearing in each panel correspond to certain
spectral positions in Figure 6. The net electric and magnetic moments
ptot and mtot are overlaid above each eigenmode. Those eigenmodes of
closed-loop magnetic character having mtot = 0 are antiferromagnetic,
while those with mtot ≠ 0 are ferromagnetic.
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nontrivial amount of energy is contained within the magnetic
field. But this is precisely the case for all of the closed-loop
magnetic modes of the N-mer. The consequences of this
shortcoming are that the energy ordering of the magnetic
modes among themselves is incorrect. For example in the case
of the 2-mer, the antiferromagnetic plasmon (mode 2 in Figure
3) is predicted to have a lower energy than the ferromagnetic
plasmon (mode 1 in Figure 3). However, as will be shown in
the following, full-wave electrodynamics simulations reveal that
the ferromagnetic mode is the ground state and the
antiferromagnetic mode is the first excited state of the 2-mer.
This inverse ordering should be expected if one adopts a circuit
model in which in-phase current loops form the lowest energy
configuration of the system.11,63 Interestingly, while the specific
energy ordering of the magnetic modes is incorrectly predicted
by H, the specific polarization of individual nanoparticles for
any given magnetic mode is nearly exactly predicted by the
electric tight-binding formalism. This is the case for all N-mer
systems. This breakdown in the model marks a transition from
a system whose energetics are electrically dominated to a
system where both electric and magnetic effects are important.
To resolve this issue, several options exist, the most rigorous of

which is to solve Maxwell’s equations, which we do in the
following. Another approach is to coarse grain the N-mer into a
collection of interacting magnetic moments, parametrized by
their underlying electric interactions. The details of the latter
will now be described.

Magnetic Tight-Binding Model. As kd becomes smaller,
the electric near field extends to infinity and the magnetic field
becomes negligible. It is, therefore, not surprising that the
previous quasi-static electric tight-binding Hamiltonian is
incomplete in its description of systems that store energy in
the magnetic field. The metal oligomers under investigation in
this paper are examples of systems where magnetic effects can
be important. To properly understand their magnetic
eigenmode structure, we will use the unique magnetic plasmon
mode of the 1-mer to construct a coarse-grained magnetic tight-
binding Hamiltonian.
The magnetic moment of the 1-mer unit cell’s ground state

may be well described as a magnetic dipole when the size of the
unit cell is small in comparison to the wavelength of an
interrogating photon of energy ℏω. Even when this is not true,
the dipole moment of a multipolar distribution of charge and
current often describes the physics qualitatively correctly.

Figure 4. |Bloc| associated with nine of the tight-binding model eigenmodes of the 6-mer arranged in increasing energy order, labeled by ν = 1, ..., 8,
26. Thirty-nine additional eigenmodes also appear in the spectrum, which we do not display. With six unit cells, the 6-mer possesses seven hybridized
magnetic plasmons. The ground state (ν = 1) is ferromagnetic in character, with the magnetic moments on each unit cell pointing in the same
direction. Beyond this appears a multipolar progression of hybridized magnetic plasmons (ν = 2−6) of antiferromagnetic character and increasing
angular nodal order. The ground state and the ferromagnetic excited state with one radial node (ν = 7) bookend this collection of antiferromagnetic
modes. A giant electric dipole (ν = 8) and giant radial breathing mode (ν = 26) also exist above all magnetic eigenmodes. The STEM electron beam
can access each of these modes by raster scanning to the appropriate position. The symbols appearing in each panel correspond to certain spectral
positions in Figure 7. The net electric and magnetic moments ptot and mtot are overlaid above each eigenmode. Those eigenmodes of closed-loop
magnetic character having mtot = 0 are antiferromagnetic, while those with mtot ≠ 0 are ferromagnetic.
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Neglecting damping, the magnetic dipole moment m associated
with a collection of n electric dipoles pi arranged in a closed
loop with current density J(x, t) = ∑iṗi(t) δ(x − Ri) is

∫
ω

ω

= = ×

= ̂

t
c

t d x

n pR
c

t

m R 0 x J x

e

( , )
1
2

( , )

2
cos( ) ,z

3

M
M (6)

where R = 0 is the location of the center of the unit cell, ℏωM =
ℏωsp((1 − 7g)/2)1/2 is the ground-state energy eigenvalue of eq
5, and |Ri| ≡ R and |pi| ≡ p for 1 ≤ i ≤ n. This magnetic dipole
oscillates periodically in time at frequency ωM and is
characterized by the magnetic polarizability.
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where |αmsp| ≡ αmsp = nαsp/2 and has a component only in the
zz-direction. In this way, by excising all higher order
eigenmodes from the eigenspectrum, the 1-mer unit cell is
coarse-grained by m.
In analogy with the procedure leading to eq 3, a tight-binding

Hamiltonian for the unit cell can be defined that dictates the
behavior of the single magnetic dipole m in a magnetic field B.
For a collection of N unit cells such as the 2-mer and 6-mer
structures displayed in Figure 1, the effective magnetic dipole
localized within each ring unit will hybridize with those on
neighboring units through mutual magnetic dipole−magnetic
dipole interactions of the form −mi(t) Λij

0 mj(t), where mi(ω)
≡ m(Xi, ω) = αM(ω)·B(Xi, ω). Restricting to nearest neighbors
leads to the following dimensionless coarse-grained Hamil-
tonian for the N-mer:
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M
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in analogy with eq 5, where the magnetic and electric coupling
constants are connected by gM = g/n and where the prime on
the sum denotes nearest neighbors. The symmetry of the
system makes gM the same for all i,j. Here qi(t) = (mmspωM/
ℏ)1/2|mi(t)|/(−e) and πi(t) = mmsp(|ṁi(t)|/(−e))/(ℏmmspωM)
are the generalized dimensionless coordinates and momenta of
a fictitious magnetic plasmon oscillator of mass mmsp = e2/
αmspωM

2 .
This is the magnetic plasmon equivalent of the Hückel

Hamiltonian used in the description of the molecular orbitals of
aromatic molecules. As the pz atomic orbitals of an aromatic
molecule hybridize into π molecular orbitals of varying nodal
structure, so too do the magnetic dipole moments on each unit
cell hybridize into collective magnetic plasmons that can be
classified as ferromagnetic or antiferromagnetic in character.
Like the Hückel Hamiltonian, which contains the coupling
constants α and β expressing the strengths of the on-site and
nearest neighbor interactions and which may be computed by
accounting for the microscopic Coulombic interactions
between electrons in the atomic orbitals, HM contains coupling
parameters that can be relayed back to the underlying
microscopic physics of the electric dipole plasmons on each
nanoparticle in the N-mer assembly. Once αsp is known for a
single particle, then all magnetic properties contained within
HM can be determined for a given assembly.
Diagonalization of the coarse-grained magnetic Hamiltonian

HM in eq 8 leads to an eigenspectrum comprising the

hybridized magnetic dipole moments of an arbitrary planar
N-mer. Because they are good approximations to the closed-
loop hybridized magnetic eigenmodes of H, we do not display
the eigenmodes of HM but instead use their corresponding
eigenenergies to properly reorder the magnetic eigenmodes of
H. Figure 3 and Figure 4 display the hybridized plasmon
resonances of the 2-mer and 6-mer composed of the same basic
1-mer unit cell described in Figure 1. The eigenmodes are
computed from H in eq 5 and placed in order of their
eigenenergies except for the closed-loop magnetic plasmons,
which are reordered according to the corresponding
eigenenergies of HM. The 2-mer has only two hybridized
magnetic plasmons; the ground state (ν = 1) is ferromagnetic
with the magnetic moments in each unit cell pointing in the
same direction, while the opposite is true for the
antiferromagnetic excited state (ν = 2). The 6-mer possesses
an even richer set of hybridized magnetic eigenmodes. The
ground state and highest lying excited state (ν = 1 and 7) are
ferromagnets and bookend the magnetic part of the spectrum,
while the five states in between (ν = 2−6) are antiferromagnets
of increasing nodal order. Effectively, we see a progression of
modes that go from having a single well-defined magnetic
moment at the center of mass of the N-mer to a fully
antiferromagnetic character, the lowest mode being that with a
single magnetic moment representing in-phase polarization
currents in all unit cells and the highest energy antiferromag-
netic mode being that with maximally out-of-phase polarization
currents. The ferromagnetic ground state (ν = 1) possesses a
finite magnetic moment, as does the first ferromagnetic excited
state (ν = 7), while all antiferromagnetic modes have none.
Because of this, the former modes are expected to have a
signature in the system’s CL response in addition to those
modes supporting net electric dipole moments.
The analogy between this magnetic tight-binding model and

Hückel theory is especially apparent in the eigenmodes of the
6-mer, with each 1-mer unit cell corresponding to a single
carbon atom. However, there is one notable exception. Benzene
has only six carbon atoms and six π molecular orbitals.64 But
the 6-mer has seven magnetic plasmon eigenmodes. Unlike in
chemistry the central ring of the 6-mer behaves as a seventh
unit cell (or as a seventh carbon atom). Because of this unique
feature, the ferromagnetic modes 1 and 7 exist and have
different energies. In fact there is no molecular analogue to the
ν = 7 mode of the 6-mer. Interestingly, modes 1−6 have the
same degeneracy pattern as that of the Hückel description of
benzene.64 Full-wave electrodynamics simulation will also show
this degeneracy pattern for all magnetic modes of the N-mer,
although the magnitude of their splitting is quite small. The
consequences of these facts will be discussed in the following.

■ FULL-WAVE ELECTRODYNAMICS SIMULATION
AND DISCUSSION

We now investigate the behavior of these systems with full-
wave e-DDA numerical electrodynamics simulations. The
previous formalism has predicted a rich and diverse set of
oligomer eigenmodes, but it is not clear a priori how well they
approximate the solutions of Maxwell’s equations. Nor is it
clear what the necessary excitation conditions are to drive each
mode. It is the purpose of this investigation to resolve these
open questions by considering both optical and electron-beam
driving sources. The eigenmode polarizations dictated by the
tight-binding model are of critical importance in this analysis, as
they will inform our choices of excitation source parameters
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such as the position of the electron beam relative to the target,
thereby allowing us to drive specific modes of interest.
Rather than spheres we choose to employ nanodisks

arranged on the corners of the hexagonal unit cell in Figure
1. None of the physics described previously is affected by this
change. Each nanodisk is composed of gold,65 has a 200 nm
diameter, is 15 nm thick, and is separated by 225 nm (center to
center) from the next adjacent particle in the lattice. For
reference, the electric dipole plasmon of each individual
nanodisk is located at 1.45 eV. All calculations employ a 100
keV electron beam to interrogate the system. Other nano-

particle shapes, sizes, separation distances, and material
compositions that do not significantly differ from these
parameters will only shift the collective plasmon resonances
of the N-mer to other parts of the electromagnetic spectrum
from the near UV through the visible to the near IR.
We first examine the 1-mer unit cell. Figure 5 displays the

computed EEL probability ΓEELS and local magnetic field
magnitude |Bloc| spectra of the 1-mer at the aloof beam
positions a and b shown in Figure 1. The electron-induced |Bloc|
is computed by integrating the locally induced magnetic field
magnitude inside the ring. The spectral location of the closed-

Figure 5. Normalized EEL probability ΓEELS (black) and signed local magnetic field magnitude |Bloc| (blue/green) spectra (lower panels) of the 1-
mer unit cell composed of 200 nm diameter by 15 nm thick gold nanodisks separated by 225 nm from center to adjacent center. The electron beam
is positioned at the aloof locations a and b denoted in the left panel of Figure 1. All panels are computed from full-wave numerical electrodynamics
simulations within the e-DDA. The spectrum of |Bloc| is evaluated by integrating the locally induced magnetic field magnitude inside the ring; red
(blue) represents a north (south) oriented magnetic dipole, while white represents the absence of a magnetic moment. The upper panels display the
spatial behavior of all of the energetically unique collective magnetic eigenmodes of the 1-mer that are excited at beam positions a and b. The
corresponding electric tight-binding eigenmode, labeled by ν, is enumerated within each of the upper panels. The corresponding eigenmodes are
overlaid as black arrows, with green arrows showing the deviation between model and simulation. Of particular importance is the ground-state
eigenmode (upper left panel), where the electric dipole moments (black arrows) on each disk conspire to generate a magnetic field localized within
the ring (⧫). Such an eigenmode is referred to as a magnetic plasmon resonance.1,3 Also shown is a primitive antiferromagnet (green clover), a giant
electric dipole (■), and a pair of high-lying excited states (▲ and ★), one of radial breathing character (★). Modes of quadrupolar character also
exist in the spectrum above ∼1.7 eV (not explicitly shown), which are beyond the approximations built into the presented tight-binding model.

Figure 6. Normalized EEL probability ΓEELS (solid black/red) and signed local magnetic field magnitude |Bloc| (dashed black/red) spectra (lower
panel) of the 2-mer computed within the e-DDA. The electron beam is positioned at the aloof locations a and b denoted in the middle panel of
Figure 1. The upper panels display the spatial behavior of a few of the 2-mer’s collective eigenmodes that are excited at beam positions a and b. The
corresponding tight-binding eigenmode is enumerated within each of the upper panels. Of particular importance is the ferromagnetic ground state
(⧫), where the magnetic moments in each unit cell point in the same direction. The first excited state is a closed-loop antiferromagnetic plasmon
(▲), where the magnetic moments in each unit cell point in opposite directions. A giant electric dipole (■) and a radial breathing mode (★) also
appear in the spectrum above both closed-loop magnetic plasmon modes.
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loop magnetic plasmon eigenmode can easily be gleaned by
comparing the two spectra at position a. The upper panels
show the spatial behavior of the |Bloc| associated with five of the
collective plasmon eigenmodes of the 1-mer, all of which are
predicted from and are enumerated in accordance with the
tight-binding eigenstates labeled by ν. The ground state of the
1-mer is a closed-loop magnetic plasmon resonance (⧫).
Beyond that lies a primitive antiferromagnetic plasmon
(clover), a giant electric dipole plasmon (■), and two high-
lying states, one of which has the character of a radial breathing
mode (★). These states, which are all accessible by the STEM
electron beam, represent the complete set of energetically
unique magnetic eigenmodes of the 1-mer. Other collective
eigenmodes of quadrupolar (or higher multipolar) character
might also appear in an experiment, but are not part of the
presented tight-binding model. It is of course possible to extend
the model to include such higher order multipolar effects.
When two unit cells are brought together into a 2-mer, the

eigenmodes intrinsic to each rehybridize into an even richer set
of eigenmodes spanning the dimer. Figure 6 displays the
computed EEL probability ΓEELS and local magnetic field
magnitude |Bloc| spectra (lower panel) of the 2-mer at the aloof
beam positions a and b shown in Figure 1. The electron-
induced |Bloc| is computed by integrating the locally induced
magnetic field magnitude within the closest ring unit adjacent
to the electron beam. The upper panels show the spatial
behavior of the |Bloc| associated with five of the collective
plasmon eigenmodes of the 2-mer, all of which are predicted
from and are enumerated in accordance with the tight-binding
eigenstates labeled by ν. The ground state of the 2-mer is a
closed-loop magnetic plasmon resonance that is characterized

by a colinear arrangement of the magnetic moments in each
unit cell (⧫). The first excited state, which is nearly degenerate
with the previous, is also a closed-loop magnetic plasmon
resonance, but has the magnetic moments in each unit cell
pointing in opposite directions (▲). Together, they are the
lowest energy ferromagnetic and antiferromagnetic plasmons of
the 2-mer. Three other excited states of interest are identified,
one of giant electric dipole character (clover) and the highest
lying being an excited antiferromagnetic plasmon (★).
The hybridization patterns that occur on moving from the 1-

mer to the 2-mer carryover to the 3-mer, 4-mer, and 5-mer (not
shown) in a straightforward manner, independent of how the
basic 1-mer unit cells within each are linked, i.e., either linearly
or cyclically. Of particular note is the multipolar progression of
magnetic plasmon resonances as the addition of another 1-mer
introduces the possibility for another node in the magnetic
plasmon density. However, a strikingly new behavior appears in
the case where six 1-mers are arranged cyclically to form the 6-
mer displayed in Figure 1. In this geometry the 6-mer is a
rescaled version of the 1-mer, where each nanoparticle of the 1-
mer is replaced by the 1-mer unit cell itself. The two structures
share the same point group. This means that the 1-mer and 6-
mer partially share a similar collection of eigenmodes, but on
different length scales. For example, the ferromagnetic ground
state (ν = 1) of the 1-mer and 6-mer are equivalent. The
primitive antiferromagnetic first excited state (ν = 2) of the 1-
mer is equivalent to the maximally nodal antiferromagnetic
excited state (ν = 6) of the 6-mer. The two primitive giant
electric dipoles (ν = 3, 4) of the 1-mer are equivalent to the
giant electric dipoles hybridized across the 6-mer (ν = 8, 9).
The radial breathing mode (ν = 12) of the 1-mer is equivalent

Figure 7. Normalized EEL probability ΓEELS (black) and signed local magnetic field magnitude |Bloc| (blue/green/red) spectra (lower panel) of the
6-mer computed within the e-DDA. The electron beam is positioned at the aloof locations a, b, c, and d denoted in the right panel of Figure 1. The
upper panels display the spatial behavior of a few of the 6-mer’s collective eigenmodes that are excited at beam positions a, b, c, and d. The
corresponding tight-binding eigenmode is enumerated within each of the upper panels. Of particular importance is the ferromagnetic ground state
(blue, ⧫), where the magnetic moments in all unit cells point in the same direction. The maximally nodal antiferromagnetic plasmon excited state
(orange, ⧫), where magnetic moments in each unit cell alternate in direction, is the highest lying magnetic plasmon of closed-loop character in the
spectrum. Others of varying nodal order in both radial and angular directions appear in between these two modes. Also a giant dipole (■) appears in
the spectrum above all closed-loop magnetic plasmon modes. The large peak in the EEL function near 1.5 eV is due, in part, to the excitation of the
giant radial breathing mode of the 6-mer (★). For this reason we do not display the EEL spectrum at beam position d.
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to the giant radial breathing mode of the 6-mer (ν = 26; see
Figure 7), etc.
Figure 7 displays the computed EEL probability ΓEELS and

local magnetic field magnitude |Bloc| spectra (lower panel) of
the 6-mer at the aloof beam positions a, b, c, and d shown in
Figure 1. The electron-induced |Bloc| is computed by averaging
the local magnetic field induced inside the closest 1-mer ring
unit to the electron beam. The upper panels show the spatial
behavior of the |Bloc| associated with eight of the collective
plasmon eigenmodes of the 6-mer, all of which are predicted
from and are enumerated in accordance with the tight-binding
eigenstates labeled by ν. The ground state of the 6-mer is a
giant closed-loop ferromagnetic plasmon resonance that is
characterized by a colinear arrangement of the magnetic
moments in all six unit cells (green, ⧫). It is important to point
out that the central open ring within the 6-mer acts as an
effective seventh unit cell and is involved in defining the
magnetic moment of the ground state. In fact this central ring
also participates in the ν = 7 ferromagnetic eigenmode (yellow,
⧫), which has one radial node separating it from the ground
state, making it the first ferromagnetic excited state. This is in
contrast to the aromatic benzene molecule, where all six of the
π molecular orbitals are nearly zero in magnitude in the empty
space within the six-membered carbon ring. In addition to these
ferromagnetic plasmon modes the electron beam is also able to
access all of the multipolar magnetic plasmon resonances of
arbitrary nodal order in the angular direction (ν = 2, 4, 5, 6).
These modes are all of antiferromagnetic character since they
have no net magnetic moment. For completeness we also show
one of the giant electric dipoles (■) as well as a giant radial
breathing mode (★). The latter appears most clearly at beam
position d at 1.485 eV; however, since this resonance can also
be seen at positions a, b, and c we do not show the EEL
spectrum at position d. What we see developing here is that
each class of hybridized magnetic and electric plasmon
resonance of the N-mer (i.e., the antiferromagnet, ferromagnet,
giant electric dipole, and radial electric breathing modes) has a
ground state as well as a family of excited states of increasing
nodal order.
Lastly, we discuss the differences between the STEM

electron beam and the plane wave as an excitation source. In
addition to this, we examine the signatures of the N-mer’s
various collective eigenmodes in cathodoluminescence spec-
troscopy. We have demonstrated that a subset of the full
eigenspectrum of the N-mer can be excited in the STEM and
detected in EELS by raster scanning to the appropriate beam
position; other eigenmodes, which are not shown, are accessible
at other locations. However, due to the polarization structure
and delocalized nature of the plane wave in contrast to the
localized evanescent electric field of the electron, the plane
wave is incapable of accessing the entire eigenspectrum. When
the plane wave’s electric field is oriented in the plane of the N-
mer, only those collective plasmon resonances of net electric
dipolar character parallel to the polarization axis can be excited.
Examples of this are the giant electric dipoles described
previously. Alternatively, when the plane wave’s magnetic field
is oriented normal to the plane of the N-mer, a ring current is
set up whose associated magnetic field acts to oppose the
applied field in accordance with Lenz’s law. This is precisely
how the ground state magnetic plasmon of a single ring
nanosystem was excited in ref 7. But this means that the
magnetically polarized plane wave can excite only those
magnetic plasmons of ferromagnetic character, because the

associated antiferromagnetic plasmons have no net magnetic
moment and, therefore, are incapable of screening the applied
magnetic field.
The CL response of the N-mer elucidates its collective

magnetic and electric character further by indicating the net or
total magnetic and electric dipole character of each eigenmode.
An interesting consequence of the electron probe is that even
plasmon eigenmodes that have no net electric dipole moment
under plane-wave excitation can have a finite electric dipole
character in electron spectroscopy due to the spatial localization
of the electron beam when placed away from the target’s center
of symmetry. As a result, both ferromagnetic and antiferro-
magnetic plasmons can be detected in CL as well as EEL
spectroscopies, although with weaker oscillator strength. Figure
8 compares the CL and EELS responses of the 2-mer, to

illustrate the different information contained in each spectrum
for the simplest nontrivial N-mer system. It is clear that both
closed-loop magnetic modes (⧫, ▲) of the 2-mer appear in
the CL spectra, the ferromagnetic mode by having a finite
magnetic dipole moment (⧫) and the antiferromagnetic mode
(▲) by having a finite electric dipole moment. Other
nonmagnetic modes with a net electric dipole moment (■,
clover) have CL responses as well. Interestingly, the ν = 19
eigenmode (★) has no net electric or magnetic dipole, yet a
strong response appears in the CL simulations at this loss
energy due to the bias induced by the deep subwavelength
localization of the electron beam. It is unclear if the small dip
near 1.55 eV is the result of the lack of an electromagnetic
dipole moment for mode 19 or if it is the result of other nearby
mode structure dominating the response. In general, for these
N-mer systems, the CL spectrum closely tracks the EELS
spectrum in the region where the surface plasmon resonance of
each nanodisk is well described by an electric dipole. At higher

Figure 8. Normalized CL (blue/green) and EELS (black) responses of
the same 2-mer system described previously in Figure 6, computed via
the e-DDA. The electron beam is positioned at the aloof locations a
and b denoted in the middle panel of Figure 1. All panels are
computed from full-wave numerical electrodynamics simulations
within the e-DDA. Because the CL spectrum encodes resonances of
either net electric dipole ptot or net magnetic dipole mtot character (or
neither), it is expected that the ferromagnetic ground state of the 2-
mer (⧫) will be visible in CL due to its finite magnetic dipole moment.
The same is true for the antiferromagnetic excited state (▲) due its
finite electric dipole moment. However, with ptot = mtot = 0 it is
surprising to find the radial breathing mode (★) in the CL spectrum.
This is due to the fact that the spatial localization of the electron beam
excitation biases the system so that in the presence of loss a finite
dipole moment arises even when the eigenmode itself has none. This
is why eigenmodes of even formally zero electric and magnetic dipolar
character can have a CL response. For comparison, the net moments
ptot and mtot of the tight-binding eigenmodes themselves are overlaid
upon the five resonances of interest.
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energies the responses of the nanodisks begin to take on a
quadrupolar character and the CL response drops to zero. Since
the electric polarization of each nanodisk has no net dipole
moment at these energies, the bias introduced by the position
of the electron beam does not affect the CL spectrum.

■ CONCLUSION
Recent experimental advances in probing the magneto-optical
properties of cyclic assemblies of plasmon-supporting metal
nanoparticles linked into extended oligomers have provided
impetus for a corresponding rigorous theoretical understanding
of their rich structure and energetics. In this paper we present a
first-principles theoretical description of the hybridization of
the fundamental electric plasmons of each nanoparticle in the
assembly into a family of delocalized oligomer plasmons based
upon a combination of microscopic electric and macroscopic
magnetic tight-binding models. Diagonalization of the corre-
sponding Hamiltonian reveals a variety of hybridized surface
plasmon resonances spanning the entire system, such as closed-
loop magnetic plasmons of both ferromagnetic and anti-
ferromagnetic character of varying multipolar order, giant
electric dipole plasmons, and even plasmons that behave as
giant radial breathing modes. The eigenmode spectrum is
investigated in detail for three particular cyclic oligomers, the 1-
mer, 2-mer, and 6-mer, and comparison is made to full-wave
numerical simulations of their electron-driven responses. It
found that the tight-binding formalism is in excellent agreement
with the simulated EELS and, further, that all of the
aforementioned modes can be systematically probed by the
STEM electron beam and detected in EELS. Comparison is
made to plane-wave excitation as well as to the CL response of
the system. The work presented in this paper provides a
rigorous and complete way to think about the collective
electronic resonances of general oligomer systems of arbitrary
morphology and material composition, advancing the design of
future metamaterials with unprecedented magneto-optical
properties.

■ METHODS
Electron Energy-Loss and Cathodoluminescence Sim-

ulations in e-DDA. The coupled-dipole66 or DDA67 approach
is routinely used to study the response of metal nanoparticles
subjected to optical-frequency radiation.68 In our previous work
we developed and numerically implemented the e-DDA69,70 as
a generalization of this approximation, incorporating the
electron beam of a STEM in place of a plane-polarized electric
field source as is common to the DDA. In the e-DDA the target
is discretized into a finite collection of polarizable point dipoles
Pj, 1 ≤ j ≤ N, each driven by the evanescent electric field
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of a passing swift electron as well as by the fully retarded
electric-dipole field ∑j≠i

N Λij Pj generated by all other points;
here Λij = eikrij{(1/rij

3 − ik/rij
2)[3n̂ijn̂ij − 1ij] − k2n̂ij × (n̂ij × )/rij}

is the standard dipole tensor that relays the electric field
generated by a dipole at one point in space xi to another xj a
distance rijn̂ij = |xi − xj|n̂ij away. In this manner, the electron-
induced responses of the system can be computed once each
dipole is brought into self-consistency with all others at a
certain value of the electron’s loss energy, ℏω. This is

accomplished through the iterative solution of the following
equation:

∑ α ω δ δ ω ωΛ− − · =
=

− P E x[ ( ) (1 ) ] ( ) ( , )
j

N

ii ij ij ij j i
1

1
electron

(10)

and depends upon the frequency-dependent linear polar-
izability αij(ω) ≡ αii(ε(ω))δij of the target point i. The
polarizability is related to the dielectric function through the
lattice dispersion relation.71 The electric field of the electron72

in eq 9 depends upon the modified Bessel functions of the
second kind K0 and K1, the Lorentz contraction factor γ = 1/(1
− ε(v/c)2)1/2, and the dielectric function ε of the background
medium, which is taken to be vacuum in all presented
calculations. The incident velocity v = vv ̂ of the electron is
determined by its incident kinetic energy mγc2 −mc2 and is
oriented along the z axis. We choose the phase eiωz/v = 1 at the
z-height of the mass centroid of the target, which defines the
plane of the impact parameter b = bb ̂, with x = (b, z) that is
perpendicular to the electron beam and that contains this point.
All target structures investigated via e-DDA simulations are

excited by a 100 keV electron beam directed normal to plane of
the N-mer; the corresponding velocity of the electrons in the
beam is 0.55c. Only aloof trajectories through a vacuum are
considered in the simulations and the electron beam is never
placed within one dipole spacing from the target, which is
discretized at a dipole spacing of 5 nm; other values were tested
to ensure that all spectra are converged at this value. Dielectric
data from Johnson and Christy65 are used for gold.
The most recent version of the e-DDA code70 computes CL

spectra and spatial maps in addition to EEL properties. The
electron-induced response, Pj, of the target is solved at each
spatial position of the electron beam according to eq 10 as in
the previous version of our code. However, for CL, at each
spatial position of the beam and at each value of the loss
energy, the induced electric field Eind is computed according to

∑ω ω= Λ ·
=

E x x x P( , ) ( , ) ( )
j

N

j jind
1 (11)

at various points x in the far field. For the e-DDA-based CL
calculations performed in this article, Eind is computed on an
angular grid of points spanning the surface of a distant sphere
of radius 5 μm, with 75 points in θ and 75 points in φ. In this
way, either the differential CL response dΓCL/dΩ or, by
quadratured solid-angle integration, the total CL response ΓCL
may be computed.
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